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Abstract

Longitudinal analysis of anatomical changes is a
vital component in many personalized-medicine ap-
plications for predicting disease onset, determining
growth/atrophy patterns, evaluating disease progres-
sion, and monitoring recovery. Estimating anatomi-
cal changes in longitudinal studies, especially through
magnetic resonance (MR) images, is challenging be-
cause of temporal variability in shape (e.g. from
growth/atrophy) and appearance (e.g. due to imag-
ing parameters and tissue properties affecting inten-
sity contrast, or from scanner calibration). This pa-
per proposes a novel mathematical framework for con-
structing subject-specific longitudinal anatomical mod-
els. The proposed method solves a generalized prob-
lem of joint segmentation, registration, and subject-
specific atlas building, which involves not just two im-
ages, but an entire longitudinal image sequence. The
proposed framework describes a novel approach that in-
tegrates fundamental principles that underpin methods
for image segmentation, image registration, and at-
las construction. This paper presents evaluation on
simulated longitudinal data and on clinical longitudi-
nal brain MRI data. The results demonstrate that the
proposed framework effectively integrates information
from 4-D spatiotemporal data to generate spatiotempo-
ral models that allow analysis of anatomical changes
over time.

1. Introduction

Analyzing longitudinal anatomical changes, via
medical imaging, is a crucial component in many clin-
ical scenarios. Subject-specific models of longitudi-
nal changes of anatomy and tissue properties are es-
sential in personalized-medicine applications for pre-
dicting disease onset, determining growth/atrophy pat-

terns during neurodevelopment/aging, evaluating dis-
ease progression, and quantitating recovery and treat-
ment efficacy. Estimating anatomical changes from
longitudinal data, especially magnetic resonance (MR)
images, is challenging because of temporal variability
in shape (e.g. from growth/atrophy) and appearance
(e.g. due to imaging parameters and tissue changes
affecting intensity contrast, or scanner calibration).

Clinically relevant anatomical changes are charac-
terized not only by the deformation of anatomical
structures but also by changes in spatial distributions
and volumes of tissues and structures. Recent litera-
ture [6, 8] has started addressing this problem, but it
presents methods for estimating deformations, under-
lying longitudinal changes, separately from the problem
of estimating spatial tissue distributions. On the other
hand, this paper solves the problem of joint estimation
of the deformations and tissue distributions underlying
longitudinal changes.

This paper presents a novel formulation for con-
structing spatiotemporal subject-specific models from
longitudinal image data based on a generative model
for changes in image appearance and anatomy. To
perform this task, the proposed method defines, and
solves, an optimization problem. The proposed method
captures the deformation of anatomical shape by esti-
mating a chain of diffeomorphisms that is constrained
to be temporally smooth. The method achieves this
by implicitly defining an optimal spatiotemporal tis-
sue “atlas” (a time sequence of tissue probability maps
for a single subject) and optimal segmentations at
each time point. Thus, the proposed method solves
a generalized problem of joint segmentation, registra-
tion, and atlas building, which involves not just two
images [1, 13], but an entire longitudinal image se-
quence. The proposed framework describes a novel ap-
proach that integrates fundamental concepts that un-
derpin segmentation, registration, and atlas construc-
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tion. This paper presents evaluation on simulated lon-
gitudinal data and results on clinical longitudinal brain
MR images.

2. Related Work

The study of subject-specific longitudinal changes
often relies on 4-D segmentation methods that extract
anatomical objects consistently in the presence of tem-
poral variations, as described before. Thus, 4-D seg-
mentation methods need to exploit spatiotemporal re-
lationships to ensure smooth and realistic changes in
anatomy and to robustly handle varying noise in the
temporal image sequence. The quantification of spa-
tiotemporal smoothness is essential for this problem
and, to our knowledge, this has not been adequately
defined. A pioneering approach by Xue et al . [16] pro-
posed an algorithm for temporally-consistent segmen-
tation for longitudinal images through iterated regis-
tration and segmentation. However, it remains unclear
what the convergence properties of such an algorithm
are, what objective function it optimizes, how free pa-
rameters (such as number of iterations) are chosen, etc.
Furthermore, this method does not provide a formula-
tion for interpolating anatomical structures at specific
time points.

Registration of 4-D images is fundamental for ana-
lyzing sequences of cardiac images. Peyrat et al . [12]
and Shen et al . [15] proposed methods for registering
spatiotemporal cardiac images by registering images se-
quentially. In their methods, registration is performed
based on images without segmentation of the under-
lying anatomies. These methods do not incorporate a
spatiotemporal anatomical atlas and an explicit longi-
tudinal growth model. In addition to cardiac imaging,
4-D registration is also critical for respiratory motion
correction. Bai and Brady [3] proposed a method for
registering sequence of Positron Emission Tomography
(PET) images of the lung using a periodic temporal
weighting. This method registers all images to a refer-
ence time point, and thus does not contain a model for
longitudinal changes.

The literature on atlas construction from population
data includes the population-regression framework pro-
posed by Davis et al . [5], which uses kernel regression
and diffeomorphic mappings for cross-sectional longitu-
dinal MR images. However, their method performs age
regression of single time point MRI data and does not
model correlations introduced by repeated MRI acqui-
sitions per subject. Recent approaches were also pro-
posed for constructing spatiotemporal population at-
lases for neonatal brains [11] and fetal brains [7], with
the assumption that anatomical structures are known
beforehand. In contrast, our proposed model estimates

Figure 1. Overview of the mathematical model for longitu-
dinal anatomical analysis. The unknown model parameters,
which are estimated, are enclosed in red rectangles. Image
It is observed at time point t. The model propagates a ref-
erence atlas (tissue probability maps) A to all t sequentially
via diffeomorphisms ht,ref , resulting in a spatiotemporal at-
las {At = A ◦ ht,ref : ∀t}. The likelihood P t for observing
image appearance at each t comes from a Gaussian mixture
with means µt and covariances Γt.

tissue probability maps from MR images and incorpo-
rates a specific sequence of diffeomorphic mappings re-
sulting in a true longitudinal anatomical model. Atlas
construction for an ensemble of images is an integral
part of the proposed framework, similar to the latent-
atlas-based segmentation approach of Raviv et al . [14].
Unlike the latent-atlas model for a population, the pro-
posed atlas construction scheme is subject-specific with
longitudinal constraints.

3. Building Spatiotemporal Anatomical
Models

Let us consider multimodal MR images {It}, of a
single subject, acquired at multiple time points t =
1, · · · , T . Each image It = {It(x) : x ∈ <3} has an
anatomical structure, characterized by C tissue types
(c = 1, · · · , C), changing smoothly over time. This sec-
tion describes a mathematical model for spatiotempo-
ral anatomical changes and the method for estimating
these model parameters from longitudinal image data.
Figure 1 illustrates the key ideas.

3.1. Mathematical Model

We rely on a generative model for changes in image
appearance and anatomy incorporating the following
components:

(1) We model image appearance by assuming that
the multimodal image data It is obtained from a Gaus-
sian mixture model (one Gaussian N (µtc,Γ

t
c) per tis-
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sue type c). The likelihood probability of observ-
ing intensity It(x) given tissue class c is P tc (x) =
P (It(x)|µtc,Γtc).

(2) We model anatomical shape changes by assum-
ing a reference tissue atlas {Ac} undergoing diffeomor-
phic (smooth, invertible) deformations ht,ref over time
to produce a spatiotemporal atlas {Atc = Ac ◦ ht,ref :
∀t}. Note that we have assumed, without loss of gener-
ality, that A is mapped to the last time point T in the
longitudinal series and that the images It have been
registered using global linear transforms. The longi-
tudinal anatomical model implies that the diffeomor-
phism ht,ref is a composition of diffeomorphisms be-
tween successive time points, i.e.

ht,ref = hT,ref ◦ hT−1,T ◦ · · · ◦ ht+1,t+2 ◦ ht,t+1

or ht,ref = ht+1,ref ◦ ht,t+1. (1)

Thus, diffeomorphic maps for a subject over time are
constrained to preserve the temporal ordering of the
sequence. The atlases are constrained to be a set of
probability mass functions

∀t∀c∀xAc(x) ∈ [0, 1], Atc(x) ∈ [0, 1],

∀t∀x
∑
c

Ac(x) = 1,
∑
c

Atc(x) = 1. (2)

The parameters underlying our model are Θ =
(A, h, µ,Γ). We estimate an optimal Θ by solving the
following constrained minimization problem:

Θoptimal = arg min
Θ

Ψ(A, h, µ,Γ|I) (3)

subject to the atlas probability constraints describe be-
fore, where

Ψ(A, h, µ,Γ|I) =
1

σ2
Q

Q(A, h, µ,Γ|I) +R(h), (4)

where Q denotes the spatiotemporal distance between
the model and the data and R denotes the regularity
term for the deformations ht,t+1 that enforces smooth
changes between consecutive time points. σQ is a scalar
weight that balances the distance term and the regu-
larity term.

Given the model parameters Θ = (A, h, µ,Γ), we
define Q to be the spatiotemporal “distance” between
data I and atlas A, weighted by temporal kernel func-
tion K:

Q(Θ|I) =
∑
ti

∑
tj

K(ti, tj)d(Iti , Atj ;h, µ,Γ), (5)

The temporal kernel K defines the range of influence of
each time point to the other time points. The distance

Figure 2. Conceptual view of the distance between image
data at time ti and the atlas at time tj . We measure the
distance through the image-appearance likelihood proba-
bilities P ti that are warped (using htj ,ti) to time tj . The
atlas Atj is A warped to time tj (using htj ,ref ) and “dis-
tance” d is measured as the negative log likelihood weighted
by the temporal kernel K(ti, tj), where closer time points
have higher influence.

between image data at time ti and atlas at time tj is
the negative log likelihood of the atlases and image-
appearances that have been mapped to the same time
point, yielding

d(Iti , Atj ;h, µ,Γ) = −
∑
x

log
∑
c

P tic ◦htj ,ti(x) ·Atj (x).

(6)
Thus, at a time point tj, we want the atlas Atj to be

similar to the warped (using htj ,ti) image-appearance
likelihoods P ti at time points ti, weighted by the ker-
nel K(ti, tj). An important effect of the kernel is
that of enforcing smooth transitions, at time points t,
between the diffeomorphisms ht−1,t and ht,t+1 (note
that R doesn’t enforce this; clarified further in the Ap-
pendix). Lorenzi et al. [10] achieve this effect via a
prior for regularizing the global temporal evolution in
the diffeomorphic demons framework. A conceptual
view of the distance between the data and atlas, tak-
ing account of temporal distance, is shown in Figure 2.

We construct each of the diffeomorphic mappings
h following the framework of large deformation diffeo-
morphic metric mapping [4], where the regularization
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Figure 3. Overview of the construction scheme for diffeo-
morphic maps by shooting a trajectory from an initial mo-
mentum. The discrete maps are computed from the initial
momenta and then composed to form the mappings. Inter-
polation of the diffeomorphic maps is done by flowing at an
intermediate step between t and t+ 1.

term R(h) is defined as:

T−1∑
i=1

ti+1∫
ti

〈Gu(w), u(w)〉dw

 +

ref∫
tT

〈Gu(w), u(w)〉dw (7)

where w denotes the discretization of the transform
between ti and ti+1, u denotes the momenta defining
the construction of the diffeomorphic mappings, and G
is the spatial kernel that defines the smoothness of the
mappings. Following the geodesic shooting formulation
of Ashburner and Friston [2], each mapping hti,ti+1 is
parametrized only by its initial momenta uti,ti+1(0).
Figure 3 shows an overview of the diffeomorphic con-
struction scheme.

3.2. Model Estimation

We estimate the parameters Θ for the spatiotempo-
ral model using alternating step-adaptive (projected)
gradient descent over the parameters. The projection
step is required for atlases due to the constraints on A
and At. The atlas constraint/feasible sets correspond
to convex regions on the hyperplanes where all coor-
dinates are non-negative and sum to unity. The pro-
jection operation maps the gradient-descent update to
the nearest point in the feasible region. The projected
gradient descent is guaranteed to converge, given suf-
ficiently small step sizes. Thus, the model estimation
is an iterative optimization procedure, where at each
iteration we compute the gradient directions and deter-
mine the step in each direction that reduces the crite-
rion Ψ. We enforce the probability constraint only on
A because this automatically enforces the constraints
on the diffeomorphically warped At = A ◦ ht,ref . The
outline of the estimation algorithm is shown in Algo-
rithm 1. The gradient equations for Ψ that we use
for optimization by gradient descent are listed in the
Appendix.

Algorithm 1 Spatiotemporal Anatomical Model Es-
timation using Joint 4-D Optimization

Initialize Θ.
Compute initial value for the criterion Ψ(0).
Set iter ← 0.
Let δ < 1 be a small positive constant.
while not converged do

Set iter ← iter +1.
Compute ∂Q

∂µ .

Set µ ← µ − εµ
∂Q
∂µ , where εµ is a step size that

reduces Q.
Compute ∂Q

∂Γ .

Set Γ ← Γ − εΓ ∂Q∂Γ , where εΓ is a step size that
reduces Q.
Compute ∂Q

∂A .

Set A ← Π(A − εA ∂Q∂A ), where Π is the operator
that projects to the space of atlases and εA is a
step size that reduces Q.
Compute ∂Ψ

∂u = 1
σ2
Q

∂Q
∂u + ∂R

∂u .

Set u ← u − εu
∂Ψ
∂u , where εu is a step size that

reduces Ψ.
Compute current value for the criterion Ψ(iter).
if (Ψ(iter−1) −Ψ(iter)) < δ(Ψ(0) −Ψ(iter)) then

converged
end if

end while

4. Validation

This section presents validation results using simu-
lated and real longitudinal brain MR images with σQ =
0.5 and Gaussian kernel K. We validate our model esti-
mation method (similar to a cross-validation strategy)
by leaving out data at a specific time point, building
a model from the remaining data, and then compar-
ing the ground truth segmentation of the left out data
against the interpolated result from the model. Fig-
ure 4 shows an overview of our validation approach.

The anatomy at an arbitrary time point s is obtained
by interpolating the deformations hti,s, and then in-
terpolating the atlas and image-appearance likelihood
probabilities that have been deformed to time point
s. The atlas probabilities Asc are Ac ◦ hs,ref where
hs,ref is computed by interpolating the diffeomorphic
map from the initial momenta immediately preceding
s. The image-appearance likelihood probabilities P sc
for class c at time s is chosen to be the one that is
matches best to the likelihoods from other time points
warped to s, or

arg min
Ps

c

∑
tj

K(s, tj)
∑
c

(P tjc ◦ hs,tj − Psc )2, (8)
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Figure 4. Overview of the validation scheme (similar to a
cross-validation strategy) by leaving out data from one time
point. We interpolate the anatomy (the tissue probabil-
ities Z) at the left-out time point via interpolation, and
then compare the interpolated anatomy against the ground
truth.

which yields the following kernel regression equation
for interpolating the image likelihood:

P sc =

∑
tj
K(s, tj)P

tj
c ◦ hs,tj∑

tj
K(s, tj)

. (9)

The classifications for each time point and each class
is obtained from the normalized tissue probabilities

Ztc(s, x) =
P sc (x)Asc(x)∑
c′ P

s
c′(x)Asc′(x)

. (10)

Validation measures are obtained by comparing the
maximum-probability segmentation labels (discrete la-
bel map) against the ground truth (discrete label map)
for the left-out time point using the Jaccard overlap
measure [9].

4.1. Simulated Longitudinal Data

We generate synthetic longitudinal data with known
ground truth by specifying a combination of basic
shapes that may change over time. These shapes
include two circles and a clover-like structure (sinu-
soidal change in the radial component in polar coor-
dinates). The top-circle radius increases over time,
the bottom-circle radius decreases over time, and the
size of the clover decreases over time. We simulate
different image-appearance models (representing MR
modalities) and different noise levels over time. Fig-
ure 5 shows the synthetic images. The results of our
model construction scheme, compared to independent
segmentations at each time point, are shown in Fig-
ure 6. We measure the performance of our model by
comparing the synthetic ground truth against the inter-
polated segmentations at the third time point, where
we obtain Jaccard overlap measures of 0.9326, 0.9036,

Figure 5. Synthetic longitudinal dataset, showing local
shape changes in different components as well as image ap-
pearance changes.

Figure 6. Anatomical structures in the synthetic ground
truth at each time point (top row), and the results of our
approach (bottom row). The top circle radius increases
over time, the bottom circle radius decreases over time, and
the size of the clover decreases over time. The result for the
third time point in the bottom row (white background) is
obtained by regression using the spatiotemporal model.

0.8621 for the clover, outer sphere, and inner spheres
respectively.

4.2. Clinical Longitudinal Data

We analyze the performance of our method using the
longitudinal clinical data provided by the Alzheimer’s
Disease Neuroimaging Initiative (ADNI). These sub-
jects were scanned at 4 time points including a base-
line age that varies per subject, and subsequently at
6 months, 1 year, and 2 years after the baseline scan.
We apply our method on a subject with Alzheimer’s
disease (subject 1055) that has a baseline age of 84.75
years, and a subject with normal aging (subject 0303)
that has a baseline age of 84.42 years. For validating
our model and the estimation algorithm, we leave out
the scans taken one year after baseline and compare
the white-matter segmentation obtained by interpolat-
ing the anatomy against ground truth. The ground-
truth data is composed of manual segmentations of
white matter in a single slice in the 3D image data.
We obtain a Jaccard overlap measure of 0.778 for sub-
ject 1055, and 0.785 for subject 0303. Figure 7 shows
the image data for subject 1055 and the white-matter
segmentations. Figure 8 shows the image data for sub-
ject 0303 and the white-matter segmentations.
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5. Comparing Spatiotemporal Anatomi-
cal Changes

The models generated using our method can be
used to compare 4-D anatomies, that may not be sam-
pled at the same time points, through interpolation.

Figure 7. Top row: longitudinal T1-weighted MR im-
ages from subject 1055 in the ADNI dataset. The sub-
ject has been diagnosed with Alzheimer’s disease. Bottom
row: The white-matter segmentations obtained using our
method, where the third time point (in orange) is the re-
sult of interpolating the 4-D anatomical model obtained
from data at the other time points.

Figure 8. Top row: longitudinal T1-weighted MR images
from subject 0303 in the ADNI dataset. The subject is
part of the control group with normal aging. Bottom
row: The white matter segmentations obtained using our
method, where the third time point (in orange) is the result
of interpolating the anatomy from data at the other time
points.

Figure 9. Comparing trajectories of anatomical changes by
building models (represented by curves) from spatiotempo-
ral data samples (represented by squares and triangles). In-
terpolation of these models at regularly sampled time points
allow us to characterize differences in the two anatomies. At
each time point s we interpolate the tissue probabilities and
measure shape difference by computing the diffeomorphic
mapping g(s) between the two tissue probability distribu-
tions.

This approach compares the trajectory of anatomical
changes, which is more comprehensive than binning
the data at specific time points and performing indi-
vidual comparisons at each time point, similar to the
shape regression approach developed by Durrleman et
al. [6]. Figure 9 shows a conceptual view of how the
models can be used to compare the trajectory of two
anatomies. We show an example of comparing the 4-D
anatomy of a subject with Alzheimer’s disease (sub-
ject 1055) against a normal control subject (subject
0303) from ADNI in Figure 10. The figure shows the
log-determinant of the Jacobian mapping between the
white matter probabilities of the two subjects at time
points t = 85, 85.25, 85.5, 85.75, 86, 86.25 years. The
mapping g between the anatomies from two different
subjects (a subject diagnosed with Alzheimer’s disease
and a normal subject) is defined as the one minimizing:

1

σ2
g

‖ ZAlzheimer’s(t)− ZNormal(t) ◦ g ‖2 +R(g) (11)

where Z(t) denotes the probabilities interpolated at
time t, and σg balances the distance term with the reg-
ularity term R. Overall, the discrepancy between the
chosen subject with Alzheimer’s disease and the chosen
subject with normal aging increases over time. The in-
tegral of the absolute values of the log determinant of
the Jacobian increases over time (Figure 10 top row),
with values of 2465.0, 3401.2, 3581.7, 4723.7, 5146.5,
and 5261.2.

6. Conclusions

This paper presents a novel mathematical formula-
tion for estimating spatiotemporal anatomical changes
that describes a data-driven method solving a joint 4-D
segmentation, registration, and atlas construction. We
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Figure 10. Comparison of the trajectories of Alzheimer’s
disease and normal aging, showing larger anatomical shape
discrepancy at later stages. Top row: log determi-
nant of the Jacobian of the mapping between interpolated
anatomies of subjects with Alzheimer’s disease and normal
aging. Bottom row: same as top row, where we subtract
the log determinant of the Jacobian at the first time point
to highlight the temporal differences.

introduce an optimization scheme with guaranteed con-
vergence, involving (projected) gradient descent. To
the best of our knowledge, this is the first formula-
tion for joint 4-D anatomical modeling and segmenta-
tion in a unified manner with a definition of optimal-
ity. Experimental results demonstrate that the pro-
posed framework effectively integrates information in
4-D spatiotemporal data to generate spatiotemporal
models that allow interpolation of anatomical struc-
tures over time. In addition to being unsupervised, and
thereby fully reproducible, the approach combines in-
formation from all temporal sequences making it more
robust to varying noise and corruption in data in indi-
vidual time points. Anatomical mappings are defined
on tissue probabilities instead of MR images, thereby
enabling the framework to naturally deal with changes
in imaging modalities over time and allowing it to han-
dle different sets of modalities at different time points.
Furthermore, the acquired image data do not undergo
complex nonlinear deformations.

Our current methodology is limited to single sub-
ject longitudinal analysis. Moreover, the clinical data
used in our experiments capture only a limited time
range of the entire disease progression. Hence, the ex-
hibited temporal changes for one subject are subtle.
As a result of these two limitations, the longitudinal
models estimated by our method do not show drastic
temporal variations. Nevertheless, for the chosen pair
of Alzheimer’s-disease and normal subjects we are able
to quantify the divergence in their longitudinal shape
changes. In the future, we will extend our methodology
to population analysis which will allow us to reliably
capture subtle longitudinal changes (intra- and inter-

population), and to do so over a larger time range.
Contemporary practices for longitudinal analysis of-

ten rely on independent segmentations at each time
point, but with our approach we obtain a complete
spatiotemporal model via joint segmentation, registra-
tion, and atlas estimation. In this way, the proposed
model enables future research in longitudinal studies
using trajectories of anatomical shape changes. These
trajectories can be obtained using serial image data ac-
quired within different time periods at different sam-
pling rates (number of temporal scans).
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Appendix: Gradients of the Criterion Ψ

In this section, we list and describe the gradients of
the criterion Ψ with respect to the model parameters
Θ that are used in the gradient descent optimization.

The gradient with respect to the image-appearance
likelihood (Gaussian) parameters at time tk for class
m (the means µtkm and covariances Γtkm) are as follows:

∂Q

∂µtkm
=

1

2

∑
tj

K(tk, tj)
∑
x

P tkm ◦ htj ,tk(x)A
tj
m(x)∑

c′ P
tk
c′ ◦ htj ,tk(x)A

tj
c′ (x)

∂

∂µtkm
(Y tk,tjm )′[Γtkm]−1(Y tk,tjm ); (12)

∂Q

∂Γtkm
=

1

2

∑
tj

K(tk, tj)
∑
x

P tkm ◦ htj ,tk(x)A
tj
m(x)∑

c′ P
tk
c′ ◦ htj ,tk(x)A

tj
c′ (x)

∂

∂Γtkm
(Y tk,tjm )′[Γtkm]−1(Y tk,tjm ), (13)

where Y
tk,tj
m = (Itk ◦ htk,tj − µtkm). Thus, the gradient

descent on the Gaussian likelihood parameters involve
a kernel-weighted averaging on the image-appearance
likelihoods that have been deformed to other time
points.

The gradient with respect to the atlas Am for class
m is obtained through the following approximation for
d(Iti , Atj ):

d(Iti , Atj )

≈ −
∑
x

|Dh−1
tj ,ref

(x)| log
∑
c

P tic ◦ href,ti(x)Ac(x),

(14)

where |Dh| denotes the determinant of the Jacobian
of the mapping h. This yields the following gradient
equation for A:

∂Q

Am(x)
= −

∑
ti

∑
tj

K(ti, tj)|Dh−1
tj ,ref

(x)| · · ·

P tim ◦ href,ti(x)∑
c′ P

ti
c′ ◦ href,ti(x)Ac′(x)

. (15)

The gradient-descent update for A changes the atlas
probability so that the class with the maximum class
likelihood will be assigned more mass.

For the gradient of the criterion Ψ with respect to
one of the diffeomorphic maps htm,tm+1

in the temporal
chain, we first gather the terms in Q related to htm,tm+1

and rewrite the criterion as follows:

Q(Θ) = −
∑
ti

∑
tj

K(ti, tj)
∑
x

log
∑
c

· · ·

P tic ◦ htm+1,ti ◦ htm,tm+1
◦ htj ,tm · · ·

Ac ◦ htm+1,ref ◦ htm,tm+1
◦ htj ,tm (16)

which is approximated by

Q(Θ) ≈ −
∑
ti

∑
tj

K(ti, tj)
∑
x

|Dh−1
tj ,tm | log

∑
c

· · ·

P tic ◦ htm+1,ti ◦ htm,tm+1
· · ·

Ac ◦ htm+1,ref ◦ htm,tm+1
. (17)

Thus, gradient descent optimization using the gradient
of Q results in the update of the diffeomorphic warps in
the directions ∇P and ∇A weighted by the temporal
kernel K. This update results in diffeomorphic maps
that are smooth over the entire temporal sequence
rather than being smooth only between sequential time
points tm and tm+1 (i.e. temporally global rather than
local). Finally, by following [2], we have the following
gradient-descent direction for Ψ with respect to the ini-
tial momenta utm,tm+1(0) that constructs htm,tm+1 :

∂Ψ

∂utm,tm+1
(0)

=
1

σ2
Q

|Dh−1
tm,tm+1

|(∇htm,tm+1
Q) ◦ h−1

tm,tm+1

+ 2 G utm,tm+1
(0). (18)
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